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Abstract

For the 1-dim. linear advection problem stability limits of Runge–Kutta (RK) methods from 1st to 7th order in com-
bination with upwind or centered difference schemes from 1st to 6th order are presented. The analysis can be carried out in
a rather general way by introduction of a broad class of Runge–Kutta methods, here called ‘Linear Case Runge–Kutta
(LC-RK)’ methods, which behave completely similar for linear, time-independent and homogeneous ODE-systems and
contain the ‘classical’ order = stage RK methods. The set of conditions for the coefficients of these LC-RK-schemes could
be derived explicitly for arbitrary order N. From an efficiency viewpoint the LC-RK 3rd order methods in combination
with upwind 3rd or 5th order or the LC-RK 4th order scheme with 4th order centered difference advection are a good
choice. The analysis can be extended easily to multidimensional splited advection for which a necessary stability condition
is presented.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The dynamic equations of meteorology build up a rather stiff system of PDE’s. Sound expansion, especially
in vertical direction, takes place on much shorter time scales than horizontal advection or even Coriolis accel-
erations. For discretising the fast processes sometimes implicit methods are used; often in form of a semi-
implicit semi-Lagrangian scheme, as it is used e.g. in the Unified Model of the British Weather Service [1].
Another method discretises only the vertical direction implicitly and the horizontal directions explicitly.
The result of this procedure is an only weakly stiff PDE-system. To efficiently solve this, a time splitting (some-
times called ‘partial operator splitting’ or ‘subcycling’) is carried out where a distinction is made between small
and large timesteps. With that the fast processes (sound expansion and buoyancy, leading to the expansion of
gravity waves) and slow processes (especially the horizontal advection) can be integrated. In [2] this fundamen-
tal idea of time splitting was proposed and realized with a 3-timelevel leapfrog scheme.
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As in most computational fluid dynamic (CFD)-applications and in meteorological modelling, the exact
description of the advection process is of fundamental importance for a successful simulation. Due to the wide
variety of internal structures arising in the atmosphere, the usual approach is to use a relatively large number
of grid points (currently about 107–108 in weather forecast models) and to use very fast algorithms, e.g. a 24-
hour forecast (globally as well as for the European area) has to be calculated in less than half an hour on an
‘ordinary’ supercomputer at the German Weather Service (DWD). Therefore relatively simple but fast spatial
discretisations for the advection terms are often used. Besides in meteorology shock-capturing is not of major
concern. This is to some extent contrary to many other CFD fields, where a nonlinear stability property like
total variation diminishing (TVD) or bounded in time (TVB) is required, perhaps additionally to linear sta-
bility properties (e.g. [3]). This lent to the inspection of sub-classes of Runge–Kutta (RK) methods like the
TVD-RK method [4] or more generally the strong-stability preserving RK methods [5].

Especially the WRF-model (e.g. [6,7]), used for scientific purposes as well as for weather forecasting in the
USA, combines upwind advection schemes with a Runge–Kutta (RK) time integrator. This is now also
applied in the COSMO-model system for the ‘dynamical’ variables velocity u, v, w, temperature perturbation
T 0, and pressure perturbation p0. The COSMO-model is currently applied at several European weather forecast
centers, e.g. at the German weather service (DWD) as COSMO-DE model (formerly known as LMK model)
or at MeteoSwiss as COSMO-S2 and COSMO-S7. It should be remarked here that for the moisture variables
and the turbulent kinetic energy, flux corrected finite volume methods [8] or Semi-Lagrangian-schemes of a
high interpolation order (see [9] for an overview) are used outside of the time splitting scheme.

One goal in this partial operator splitting viewpoint is the search for advection schemes which allow large
timesteps. In [7] stability limits in the case of 2nd and 3rd order RK methods and for several upwind and cen-
tered difference advection schemes were given. The Courant number limits suggest, that an increase of the
order of a RK method would also allow larger timesteps. This is not generally the case, which is demonstrated
in the following, at least for the spatial discretisations presented here.

The aim of this work is the systematic calculation of stability limits for Runge–Kutta methods up to 7th
order in combination with upwind or centered difference schemes up to 6th order. In a relatively broad num-
ber of cases even an analytical expression for the limiting Courant number can be presented. We want to
remark, that for these schemes the important theorem of Shu [4,3,5] about the CFL-condition for strong sta-
bility cannot be applied, because (with the exception of the upwind scheme of first order, the donor cell
method) all spatial discretisations are unstable with an Euler-forward step (see below).

In Section 2 it is shown, that it is not necessary to make a distinction between different Runge–Kutta meth-
ods of a certain order. One can even define a very large class of RK-methods with exactly the same linear sta-
bility properties; those are called here ‘Linear Case-RK (LC-RK) methods’. One example for such a 3rd order
LC-RK method is used in [7] for the WRF model. This class contains the ‘classical order = stage for nonlinear
equations’ RK-methods. This distinguishes this paper also from other works which inspect RK-methods of
lower order than stage. For computational aeroacoustic applications schemes with only small dispersion
and dissipation errors were constructed by a minimization of the integral error of the effective wavenumber
([10,11]). Such an optimization can even lead to schemes which depend explicitly from the initial conditions
[12]. In Section 3 the stability limits for LC-RK methods for different linear, spatial discretisations of the
one-dimensional advection operator are calculated. To show the relevance of the stability statements some
numerical experiments are carried out in Section 4. Section 5 will present an extension to the space splitted
multi-dimensional case. Section 6 makes an assessment about the efficiency of these schemes.
2. A linear view to explicit Runge–Kutta-schemes

For a system of M ordinary differential equations (ODE’s)
dql

dt
¼ flðt; q1; . . . ; qMÞ; l ¼ 1; 2; . . . ;M ; ð1Þ
the general explicit N-stage Runge–Kutta method to advance the solution from timestep tn to tnþ1 ¼ tn þ Dt
reads
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qð0Þl :¼ qn
l ;

kðiÞl :¼ flðtn þ Dt � ai; q
ði�1ÞÞ;

qðiÞl :¼ qn
l þ Dt �

Xi

j¼1

biþ1;jk
ðjÞ
l ;

qnþ1
l :¼ qðNÞl ;

ð2Þ
l ¼ 1; 2; . . . ;M , i ¼ 1; 2; . . . ;N . We abbreviated qn
i ¼ qiðtnÞ and denote by q ¼ ðq1; q2; . . . ; qMÞ the vector of all

variables of the ODE-system. The coefficients are often written in the so called Butcher–Tableau [13]:
There exist several different forms of writing the RK schemes. One of the most general form is used in [5,3]. In
older texts there are often introduced new coefficients bj � bNþ1;j (e.g. [13,14]); but without them the most fol-
lowing formulas can be written more compact (this is also remarked in [13, p. 163]).

To arrive at a certain convergence order, the coefficients must fulfill some constraints. These can be derived
in the following manner; done here only for one variable. In the following we limit ourselves to autonomous
ODE-systems, analogous to [13], which simplifies the constraints to a certain extent. At first, the total deriv-
atives of q are expressed with the aid of the original ODE-system by the right hand side f and its derivatives
dq
dt
¼ f ðqÞ; ð3Þ

d2q
dt2
¼ d

dt
dq
dt
¼ df

dq
dq
dt
¼ f;qf ; ð4Þ

d3q
dt3
¼ d

dt
d2q
dt2
¼ f;q;qf 2 þ f 2

;qf ; ð5Þ

d4q
dt4
¼ d

dt
d3q
dt3
¼ f;q;q;qf 3 þ 4f ;q;qf;qf 2 þ f 3

;qf ; ð6Þ

� � �

These are put into the Taylor expansion of the function
qðt þ DtÞ ¼ qðtÞ þ Dt
dq
dt
þ 1

2
Dt2 d2q

dt2
þ 1

3!
Dt3 d3q

dt3
þ � � � ; ð7Þ
which can now be compared order by order with the Taylor expansion by Dt of the general RK method (2).
The constraints are found by comparing the different orders Dti and for a certain order i by comparison of the
coefficients of f, f;qf , . . .. Dependent from how far this procedure is carried out, one obtains an N-stage RK
method of order N 0. These calculations become very tedious with increasing order; [13] uses a special graph
theory for their economic calculation and can show for example that for nonlinear ODE-systems the maxi-
mum reachable order N 0 can be less than the stage N of the RK method. [14] derives these conditions with
a ‘linear representation’ of the RK-equations and a subsequent recursion to circumvent the graph theoretical
approach. At least the so called consistency condition
XN

i¼1

bNþ1;i ¼ 1 ð8Þ
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has to be fulfilled. It is both necessary and sufficient to get a local truncation error of OðDt2Þ [13, p. 131,15].
Strictly speaking, for autonomous ODE’s the coefficients ai are not needed. In this case [13] defined them by
ai :¼
Xi�1

j¼1

bij; ð9Þ
which are indeed the N � 1 conditions needed for non-autonomous systems.
According to the further constraints one can show that there exist exactly one explicit first order Runge–

Kutta method (the Euler forward scheme), a 1-parametric family of explicit 2nd stage, 2nd order RK methods,
a 2-parametric family of explicit 3rd stage, 3rd order RK methods, an also 2-parametric family of explicit 4th
stage, 4th order RK methods, and so on (e.g. [16]). The general conditions in the nonlinear case up to 4th
order are listed in the Appendix A.

2.1. ‘Linear Case Runge–Kutta’ methods for linear operators

Now we consider a linear, homogeneous and time-independent ODE-system of the form
dql

dt
¼ flðq1; . . . ; qMÞ ¼

XM

j¼1

P lj qj; l ¼ 1; 2; . . . ;M ; ð10Þ
or in vector notation
dq

dt
¼ Pq: ð11Þ
The time-independence implies that the P ij are constant coefficients. In the case of only one equation M ¼ 1
this is called the ‘standard-testproblem’ [13] or the ‘Dahlquist test equation’ [17,18]. We note that in particular
linear PDE’s and PDE-systems can be described, which are semi-discretized by the ‘method of lines’, e.g. equa-
tions of the form (74).

Lemma 2.1. For the linear, homogeneous ODE-system (10) with a constant coefficient matrix P the N-stage
Runge–Kutta method (2) (N ¼ 0; 1; 2; 3; . . .) is of the form
qðNÞ ¼ ð1þ DtPhð1ÞNþ1 þ Dt2P2hð2ÞNþ1 þ � � � þ DtN PN hðNÞNþ1Þqð0Þ ¼
XN

k¼0

ðDtPÞkhðkÞNþ1

 !
qð0Þ; ð12Þ
with the following recursively defined abbreviations:
hð0Þi :¼ 1; i ¼ 1; 2; 3; . . . ; ð13Þ

hð1Þi :¼
Xi�1

j¼1

bijh
ð0Þ
j ¼

Xi�1

j¼1

bij; i ¼ 2; 3; . . . ; ð14Þ

� � �

hðlÞi :¼
Xi�1

j¼l

bijh
ðl�1Þ
j ; i ¼ lþ 1; lþ 2; . . . ; ð15Þ

� � �
The bracketed term in (12) is often called the stability function R: qðNÞ ¼ RðDtPÞqð0Þ [18]. We want to mention,
that the hð1Þi are identical with the coefficients ai from Eq. (9) occuring in the Butcher Tableau. This result is
already sketched in [17, p. 16], but without the correct summation indices. Therefore we will give a proof done
by complete induction. The lemma is trivially fulfilled for N ¼ 0. For the conclusion from 0; 1; 2; . . . ;N to
N þ 1 we start from definition (2) of the RK method applied to (10)
qðNþ1Þ ¼ qð0Þ þ Dt
XNþ1

j¼1

bNþ2;jPqðj�1Þ: ð16Þ
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Now we use the induction hypothesis
qðNþ1Þ ¼ qð0Þ þ Dt
XNþ1

j¼1

bNþ2;jP
Xj�1

l¼0

ðDtPÞlhðlÞj

 !
qð0Þ: ð17Þ
The sequence of the summation can be exchanged to
qðNþ1Þ ¼ 1þ
XN

l¼0

ðDtPÞlþ1
XNþ1

j¼lþ1

bNþ2;jh
ðlÞ
j

 !
qð0Þ ð18Þ
and with a renaming of the summation lþ 1 ¼ l0 we get
qðNþ1Þ ¼
XNþ1

l0¼0

ðDtPÞl
0XNþ1

j¼l0
bNþ2;jh

l0�1
j|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð�Þ

0
BB@

1
CCAqð0Þ: ð19Þ
Term (�) is exactly the definition of hðl
0Þ

Nþ2 which finishes the conclusion to N þ 1.

An explicit expression for the coefficients is
hðlÞi ¼
Xi�1

jl¼l

Xjl�1

jl�1¼l�1

� � �
Xj3�1

j2¼2

Xj2�1

j1¼1

bijl
� bjljl�1

� � � bj3j2
� bj2j1

; i ¼ lþ 1; lþ 2; . . .
This can be derived directly from Eq. (15) or can again easily be proved by induction.

Theorem 2.1. For the linear, homogeneous ODE-system (11) with a constant coefficient matrix P the N-stage
Runge–Kutta method (N ¼ 0; 1; 2; 3; . . .) has the form (12) and is of order N 0, if the following conditions are

fulfilled:
hðlÞNþ1 ¼
1

l!
; l ¼ 1; 2; . . . ;N 0; N 0 6 N : ð20Þ
Proof (see also [17]). Due to the time-independency of the Pij the formal solution of (10) is
qnþ1 ¼ eDtPqn: ð21Þ

The formulation (12) from Lemma 2.1 with the N 0 conditions (20) is exactly its expansion up to order

N 0. h

To sum it up, Lemma 2.1 makes a statement about the form of all RK-schemes applied to the linear ODE-
system whereas Theorem 2.1 determines their order.

In the special case N 0 ¼ N we will call such a RK method a Linear Case Runge–Kutta method of stage N or
of order N (LC-RK method of order N). We want to emphasize here, that for these LC-RK methods, Eq. (12)
with conditions (20) is indeed an exact result and not only the first terms of a Taylor expansion. Therefore, for
the following section the important conclusion is: all different LC-RK methods of a certain order N behave
exactly identical for the linear, homogeneous ODE-system (10); in particular they possess the same stability
properties for such ODE-systems. The particular conditions up to order 4 are listed in Appendix A.

A simple solution of these conditions for an LC-RK method of order N is
biþ1;i ¼
1

N � iþ 1
; i ¼ 1; 2; . . . ;N ; bij ¼ 0 otherwise: ð22Þ
This can be easily proved: insertion of these bi;j in the definition of the hðlÞi (13)–(15) gives
hðlÞi ¼
1

N � iþ 2
hðl�1Þ

i�1 ; i ¼ lþ 1; lþ 2; . . . ;N þ 1; l ¼ 1; 2; . . . ð23Þ
Starting from l ¼ 1 one can show successively that the conditions (20) can be fulfilled.
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For N ¼ 3 this is just the scheme proposed in [7] for the WRF-model; or e.g. for an LC-RK of order 5:
Lemma 2.2. Those Runge–Kutta methods, whose order N is equal to their stage N also for nonlinear problems,

are a subset of the Linear Case RK methods of order N.

Proof. For the linear, homogeneous ODE-system (10) one can deduce by successive derivation
dkq

dtk
¼ Pkq ¼ of

oq

� �k�1

f; ð24Þ
because the Jacobian matrix is just of=oq ¼ P. Obviously these are the most rightstanding terms on the r.h.s.
of the general higher derivatives of q in (3), (4), . . .Therefore in the linear case we have to fulfill only a subset of
the conditions valid for the general nonlinear case. h

In particular all ‘order = stage’ RK methods of a certain order behave identically to the linear, homoge-
neous ODE-system (10). Therefore the 2nd, 3rd and 4th order RK-schemes mentioned in [19] or the 3rd order
TVD-RK scheme in [20], which is described as the optimal 3rd stage, 3rd order SSP(3, 3)-RK method in [5],
are also examples of LC-RK schemes.

However, a time splitting of the type [6] is not covered by this analysis. There, a different ratio occurs
between the fast and slow operators in every RK substep, and therefore a time-dependency of the P’s exists
indirectly.

Simply speaking, an LC-RK Nth order scheme is of Nth order for linear problems, but in general of less
order for nonlinear or time-dependent problems. The reason to consider them is that they behave similarly to
linear, homogeneous ODE-systems. Moreover to derive linear stability constraints more or less analytically or
even only by numerical experimentation it is sufficient to consider (or program) only the most simple version
e.g. (22). It should be mentioned that the development of the strong stability preserving RK-methods follow a
different guideline: their order N 0 is generally lower than their stage N, even in the linear case, e.g. the SSP(4,3)
scheme in [5] fulfills only the first three conditions (A.8), (A.9), and (A.11) of a LC-RK 4th order method, but
not the 4th condition (A.15).
3. Linear one-dimensional advection

Our aim is the stability analysis of the linear advection equation with constant velocity u
oq
ot
¼ Fq ¼ �u

oq
ox
¼ � ouq

ox
: ð25Þ
After a spatial discretisation, e.g. with the ‘method of lines’ (as usual qjðtÞ � qðxj; tÞ), the following ODE-sys-
tem can be solved numerically with an ODE-solver like a Runge–Kutta method. If the discretisation scheme
and the boundary conditions are linear, too, then the resulting ODE-system has the form (10). [7,19] present
spatial discretizations of the flux form with the advection flux
F ðqÞ ¼ uq: ð26Þ
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In the case considered here advection-form and flux-form and also their upwind or centered difference discret-
isations are identical; in the following we will consider only the advection form of the operator F :
‘up1’ : f ð1Þj ðqÞ :¼ �u
qj � qj�1

Dx
; ð27Þ

‘cd2’ : f ð2Þj ðqÞ :¼ �u
qjþ1 � qj�1

2Dx
; ð28Þ

‘up3’ : f ð3Þj ðqÞ :¼ �u
2qjþ1 þ 3qj � 6qj�1 þ qj�2

6Dx
; ð29Þ

‘cd4’ : f ð4Þj ðqÞ :¼ �u
�ðqjþ2 � qj�2Þ þ 8ðqjþ1 � qj�1Þ

12Dx
; ð30Þ

‘up5’ : f ð5Þj ðqÞ :¼ �u
�3qjþ2 þ 30qjþ1 þ 20qj � 60qj�1 þ 15qj�2 � 2qj�3

60Dx
; ð31Þ

‘cd6’ : f ð6Þj ðqÞ :¼ �u
ðqjþ3 � qj�3Þ � 9ðqjþ2 � qj�2Þ þ 45ðqjþ1 � qj�1Þ

60Dx
: ð32Þ
These formulae are simply the derivative oq=ox up to the appropriate order with the least width of the stencil,
so called optimal-order schemes. In the following we will use the abbreviations up1, up3, up5 and cd2, cd4, cd6
for these upwind and centered difference discretisations of the appropriate order.

We carry out a von-Neumann stability analysis similar e.g. to the methodology in [18, p. 111] (see also the
remarks in Section 4). The Fourier transformation
qjðtÞ ¼
X

k

~qkðtÞeikjDx ð33Þ
converts the semi-discrete system to an appropriate system for ~qkðtÞ, which again possess the form (10).
Assuming periodic boundary conditions its matrix P is even diagonal and as usual for von-Neumann-analysis
it is sufficient to consider only single wave lengths. This generates the decoupled equations
d~qk

dt
¼ �i

1

Dt
CdðkÞ~qk; ð34Þ
where the factor dðkÞ is a polynomial in e�ikDx (with constant coefficients) and is solely determined by the spa-
tial discretisation. C is the Courant number C :¼ uDt=Dx and the factor Dt was extracted so that dðkÞ becomes
dimensionless. d is sometimes called effective (dimensionless) wavenumber (e.g [10]), because it is identical with
kDx in the continuous case (that is the reason why the factor �iC was extracted, too).

For the numerical operators (27)–(32) we get with the dimensionless wave number K :¼ kDx the following
effective wavenumbers:
dð1Þ ¼ iðe�iK � 1Þ; ð35Þ
dð2Þ ¼ sin K; ð36Þ

dð3Þ ¼ �i
2eiK þ 3� 6e�iK þ e�i2K

6
; ð37Þ

dð4Þ ¼ �
1

6
sin 2K þ 4

3
sin K; ð38Þ

dð5Þ ¼ i
3e2iK � 30eiK � 20þ 60e�iK � 15e�i2K þ 2e�i3K

60
; ð39Þ

dð6Þ ¼
1

30
sin 3K � 9

30
sin 2K þ 45

30
sin K: ð40Þ
Discretising Eq. (34) with an LC-RK method of order N one gets
~qnþ1
k ¼ AðkÞ~qn

k ; ð41Þ

where due to Theorem 2.1 the amplification-factor AðkÞ has the form
AðkÞ ¼ 1þ zþ z2

2!
þ � � � þ zN

N !
; z ¼ �iCdðKÞ: ð42Þ
From this follows the close relationship between linear stability and approximation order of the Runge–Kutta
methods.
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3.1. Results of the stability analysis

We now want to calculate stability limits. In [18, Section II.1.4] the critical Courant numbers for RK from
1st to 4th order in combination with up1, cd2, up3, and cd4 spatial discretization were calculated. There it was
done by numerically estimating the maximum of the amplification factor jAj. The question now is the follow-
ing: can RK methods of even higher order result in a higher stability range and therefore in higher efficiency?
Therefore RK5, RK6, and RK7 are considered also with higher spatial discretizazions up5 and cd6. In [7] the
stability limits for RK2 and RK3 and discretizations from up3 to cd6 were calculated (assumedly) by numer-
ical experimentation. [10] searched RK-schemes for centered difference spatial discretisations of the advection
operator which are largely stable and also have a high degree of accuracy. The RK-schemes they found are not
a subclass of the LC-RK schemes, but it is interesting, that their optimization procedure delivered coefficients
hðlÞNþ1 of the stability function that are rather close to 1=l! of the LC-RK-schemes (see their Table 2). Their
approach was improved by [11] who found optimized RK-schemes which allow higher Courant numbers in
connection with optimized centered difference schemes.

In the following partly analytical results for the critical Courant number can be achieved.

3.1.1. Consideration of centered difference schemes

The square modulus of the amplification-factor jAðkÞj2 obviously can be written as a real polynomial in the
real and imaginary parts of z ¼ r þ is, therefore r ¼ ImðCdðKÞÞ and s ¼ �ReðCdðKÞÞ. The stability analysis of
centered difference schemes is in a certain way more lucid than that of upwind schemes, because in c.d.-
schemes dðkÞ is purely real and z is purely imaginary, i.e. r ¼ 0. For the case of a discretisation with centered
differences jAðkÞj2 simplifies to
LC-RK 1st order : jAðkÞj2 ¼ 1þ s2; ð43Þ

LC-RK 2nd order : jAðkÞj2 ¼ 1þ s4

4
; ð44Þ

LC-RK 3rd order : jAðkÞj2 ¼ 1� s4

ð3!Þ2
ð3� s2Þ; ð45Þ

LC-RK 4th order : jAðkÞj2 ¼ 1� s6

ð4!Þ2
ð8� s2Þ; ð46Þ

LC-RK 5th order : jAðkÞj2 ¼ 1þ s6

ð5!Þ2
ð40� 15s2 þ s4Þ; ð47Þ

LC-RK 6th order : jAðkÞj2 ¼ 1þ s8

ð6!Þ2
ð180� 24s2 þ s4Þ; ð48Þ

LC-RK 7th order : jAðkÞj2 ¼ 1� s8

ð7!Þ2
ð1260� 504s2 þ 35s4 � s6Þ: ð49Þ
Due to the fact that s is the product of C and a linear combination of sin mK, one can see that the LC-RK
schemes of 1st, 2nd, 5th and 6th order in combination with c.d.-discretisations of the advection operator must
be unconditionally unstable: in this case jAj2 > 1 for arbitrary small C > 0 (this result follows from the ‘small
k’-expansion, too, see below).

But also the analysis for c.d.-schemes in combination with LC-RK 3rd, 4th and 7th order is much simpler,
because one has to look only for maxima of jAj2 in dependence of one variable s (instead of two), with the
simple form ‘s ¼ C �

Pm
l¼1dl sin lK’. Due to sð�KÞ ¼ sðKÞ it is sufficient to inspect the interval K 2 ½0; p�.

For K ¼ 0 and K ¼ p there follows s ¼ 0 and therefore jAj2 ¼ 1, i.e. no instabilities at the boundaries of this
interval. Therefore it is sufficient to search local maxima in K 2 ð0; pÞ by
djAj2

dK
¼ djAj2

ds2
2s

ds
dK
¼ 0: ð50Þ
A graph of sðKÞ for c.d.-schemes of 2nd, 4th, or 6th order shows, that s possess no zeroes and exactly one
extreme value in the open interval K 2 ð0; pÞ (for C 6¼ 0), which will be determined in the following:
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– Centered difference of 2nd order. From (36) follows:
s ¼ �C sin K; ð51Þ

therefore it is sufficient to consider jAj2 at the critical dimensionless wavelength Kcrit;2 ¼ p=2, which gives
sðK ¼ p=2Þ ¼ �C: ð52Þ

– Centered difference of 4th order. From (38) follows that local maxima can occur for
ds
dK
¼ C

2

3
cos2 K � 2 cos K � 1

2

� �
¼ 0:
The polynomial x2 � 2x� 1=2 possess the two zeroes x1;2 ¼ 1�
ffiffiffiffiffiffiffiffi
3=2

p
. Obviously only the solution with the

minus sign is possible and it can exist a possible maximum of jAj2 in
Kcrit;4 ¼ arccos 1�
ffiffiffi
3

2

r !
¼ 1:797 . . . ð53Þ
for which
sðK ¼ Kcrit;4Þ ¼ �C
1

2
þ

ffiffiffi
6
p

12

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
ffiffiffi
6
p
� 6

q
	 �1:37222C: ð54Þ
– Centered difference of 6th order. From (40) follows:
ds
dK
¼ C

12

30
cos3 K � 3 cos2 K þ 3 cos K þ 3

2

� �
¼ 0:
The polynomial x3 � 3x2 þ 3xþ 3=2 possess only one real zero x1 ¼ 1�
ffiffiffiffiffiffiffiffi
5=23

p
and it follows a possible

maximum of jAj2 in
Kcrit;6 ¼ arccos 1�
ffiffiffiffiffiffiffiffi
5=23

p� �
¼ 1:936 . . . ð55Þ
This gives
sðK ¼ Kcrit;6Þ ¼ �C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10

3
p ffiffiffiffiffi

22
3
p

�
ffiffiffi
5

3
p� �r

1ffiffiffi
2
p þ

ffiffiffi
26
p ffiffiffi

53
p

6
þ 25=652=3

30

 !
	 �1:5859C: ð56Þ
The first factor djAj2=ds2 in (50) also possess zeroes, but Figs. 1–5 of jAðC;KÞj show, that the local maximum is
determined indeed by the zeroes of ds=dK.
3.1.2. Expansion for long waves

By an expansion of the modulus of the amplification factor jAðKÞj2 for small K (i.e. for long waves) necessary
conditions for stability can be derived in a relatively simple manner. Instabilities of long waves cannot easily be
detected in numerical solutions, because they often grow slowly and do not attract attention like small scale
noise. Another undesirable feature of instabilities by long waves is that they cannot be eliminated by filtering.
We skip the tedious expansion here but only present the leading terms in Table 1. Table 2 contains the necessary
stability criteria derived from them. Especially for the upwind schemes one can get, apart from the familiar
C P 0 condition, some non-trivial conditions namely for RK2 and upwind 3rd order, and RK5 and upwind
5th order, and also the instability conclusions for all the RK1 (with the exception of upwind 1st order) and
RK2 with upwind 5th order. In [7] a stability constraint C < 0:30 was noted for RK2 with upwind 5th order,
which is found to be not correct by the analysis presented here. Probably it was found there by numerical exper-
imentation, because this is a very weak instability and hard to see in the amplification factor, Fig. 1.

3.1.3. Discussion of the particular schemes

For some of the schemes analytical expressions can be found for the stability range. For the other cases
critical Courant numbers Ccrit are determined as usual by looking for the smallest C for which the first time
a wave number K generates an amplification factor jAðC;KÞj > 1.
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Fig. 1. Amplification factors jAðC;KÞj for RK2 and up1, up3, up5, and cd6 (denoted as adv = 1, 3, 5, 6 above each plot) for four different
Courant numbers C ¼ 0:1; 0:5; 0:98; 1:02� Ccrit in the case of Ccrit > 0 (i.e. up1, up3), C ¼ 0:01; 0:03; 0:1; 0:3 in the unstable case (i.e. up5
and cd6). The absolute values of C are written at the top of each plot.
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3.1.3.1. LC-Runge–Kutta 1st order (for Euler-forward). For the upwind-scheme, i.e. RK1 with upwind 1st
order, it follows from (42) and (35)
jAðkÞj2 ¼ 1þ 4 sin2 K
2

CðC � 1Þ
and therefore the familiar stability constraint 0 < C < 1.
For all other discretisations, upwind 3rd and 5th order and the centered differences of 2nd, 4th, and 6th

order, the long waves are already unstable for all C 6¼ 0. For centered differences of 2nd, 4th, 6th (even order)
all waves K 2 ð0; pÞ are unstable.
3.1.3.2. LC-Runge–Kutta 2nd order. Section 3.1.1 showed that for centered difference of 2nd, 4th and 6th order
especially waves with K ¼ p=2 are unstable and in Section 3.1.2 it was shown that also the long waves are
unstable for C 6¼ 0. The lower right panel of Fig. 1 shows also that all waves with K 2 ð0;pÞ are unstable
for cd6; the figures for cd2 and cd4 look like that for cd6 with the maximum lying at Kcrit;2, Kcrit;4, respectively.
As remarked above RK2 + upwind 5th order is unstable due to an instability of the long waves. This insta-
bility is very weak and hard to see in the lower left panel of Fig. 1.

For RK2 and upwind 1st order, the long waves are stable for C P 0. The amplification factor is
jAðkÞj2 ¼ 1� Ca2 þ C2

2
� C3

2
þ C4

4

� �
a4; a :¼ 2 sin

K
2
:
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Fig. 2. Amplification factors jAðC;KÞj for RK3 and up1, up3, up5, and cd6 (for the choice of C see Fig. 1).
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It is plausible (hence not necessary) that short 2Dx-waves, which produce the maximum value of a, become
unstable first; this is confirmed graphically by Fig. 1. The amplitude for 2Dx-waves is expressed as
AðK ¼ pÞ ¼ 1� 2Cð1� CÞ ð57Þ
and is therefore stable for 0 < C < 1.
For RK2 and upwind 3rd order the amplitude sounds for long waves
jAðkÞj2 ¼ 1� K4 2

3
� C3

� �
C
4
þOðK6Þ; ð58Þ
i.e. long waves are stable for
0 6 C 6
2

3

� �1=3

	 0:87358 . . . ð59Þ
They become unstable first as can be seen in Fig. 1 and therefore mark the stability range. In this case an ana-
lytic expression for C could be found for a result which was known experimentally before [18, p. 106].

3.1.3.3. LC-Runge–Kutta 3rd order. For RK3 and upwind 1st order the long waves remain stable for C P 0
and become unstable for C < 0. For 2Dx-waves (which graphically become unstable first) the amplitude is
AðK ¼ pÞ ¼ 1� 2C þ 2C2 � 4

3
C3: ð60Þ
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C3;6;crit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3
3
2

ffiffiffiffiffiffiffiffi
5=23

p
þ 1

2

ffiffiffiffiffiffiffiffi
2=53

p
þ 1

9

s
¼ 1:092102 . . . ð63Þ
The amplitudes are shown in Fig. 2; again the figures for cd2 and cd4 look like that for cd6 with the maximum
shifted to Kcrit;2 and Kcrit;4 respectively.

3.1.3.4. LC-Runge–Kutta 4th order. The long waves do not constrain the stability for centered difference
schemes of 2nd, 4th, and 6th order whereas they require C P 0 for all the upwind schemes (see Table 2).

For RK4 and upwind 1st order, Fig. 3 shows that 2Dx-waves become unstable first for which the amplifi-
cation factor is
8

3

*

C



Table 1
Expansion of the amplification factor jAðkÞj2 for small K

up1 cd2
LC-RK1 1þ K2 � CðC � 1Þ þ OðK4Þ 1þ K2 � C2 þ OðK4Þ
LC-RK2 1� K2C þ OðK4Þ 1þ K4C4=4þ OðK6Þ
LC-RK3 1� K2C þ OðK4Þ 1� K4C4=12þ OðK6Þ
LC-RK4 1� K2C þ OðK4Þ 1� K6C6=72þ OðK8Þ
LC-RK5 1� K2C þ OðK4Þ 1þ K6C6=360þ OðK8Þ
LC-RK6 1� K2C þ OðK4Þ 1þ K8C8=2880þ OðK10Þ
LC-RK7 1� K2C þ OðK4Þ 1� K8C8=20160þ OðK10Þ

up3 cd4
LC-RK1 1þ K2 � C2 þ OðK4Þ 1þ K2 � C2 þ OðK6Þ
LC-RK2 1� K4ð2=3� C3ÞC=4þ OðK6Þ 1þ K4C4=4þ OðK8Þ
LC-RK3 1� K4CðC3 þ 2Þ=12þ OðK6Þ 1� K4C4=12þ OðK6Þ
LC-RK4 1� K4C=6þ OðK6Þ 1� K6C6=72þ OðK8Þ
LC-RK5 1� K4C=6þ OðK6Þ 1þ K6C6=360þ OðK8Þ
LC-RK6 1� K4C=6þ OðK6Þ 1þ K8C8=2880þ OðK10Þ
LC-RK7 1� K4C=6þ OðK6Þ 1� K8C8=20160þ OðK10Þ

up5 cd6
LC-RK1 1þ K2C2 þ OðK6Þ 1þ K2C2 þ OðK8Þ
LC-RK2 1þ K4C4=4þ OðK6Þ 1þ K4C4=4þ OðK10Þ
LC-RK3 1� K4C4=12þ OðK6Þ 1� K4C4=12þ OðK6Þ
LC-RK4 1� K6Cð12=5þ C5Þ=72þ OðK8Þ 1� K6C6=72þ OðK8Þ
LC-RK5 1þ K6CðC5 � 12Þ=360þ OðK8Þ 1þ K6C6=360þ OðK8Þ
LC-RK6 1� K6C=30þ OðK8Þ 1þ K8C8=2880þ OðK10Þ
LC-RK7 1� K6C=30þ OðK8Þ 1� K8C8=20160þ OðK10Þ

Table 2
Necessary stability conditions, which are only determined by long waves (K ! 0)

up1 cd2 up3 cd4 up5 cd6

LC-RK1 0 6 C 6 1 Unstable Unstable Unstable Unstable Unstable
LC-RK2 C P 0 Unstable 0 6 C 6

ffiffiffiffiffiffiffiffi
2=33

p
Unstable Unstable Unstable

LC-RK3 C P 0 – C P 0 – – –
LC-RK4 C P 0 – C P 0 – – –
LC-RK5 C P 0 Unstable C P 0 Unstable 0 6 C 6

ffiffiffiffiffi
125
p

Unstable
LC-RK6 C P 0 Unstable C P 0 Unstable C P 0 Unstable
LC-RK7 C P 0 – C P 0 – C P 0 –
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AðK ¼ pÞ ¼ 1� 2C þ 2C2 � 4

3
C3 þ 2

3
C4: ð64Þ
Real solutions for AðK ¼ pÞ ¼ þ1 exist for C ¼ 0 and
C4;1;crit ¼ a=6� 10=ð3aÞ þ 2=3; a ¼ ð172þ 36
ffiffiffiffiffi
29
p
Þ1=3 ð65Þ
and therefore holds the stability range 0 6 C < C4;1;crit ¼ 1:392646782 . . ..
For RK4 and centered difference 2nd order the amplification factor sounds
jAðkÞj2 ¼ 1� 1

72
ðC sin KÞ6 1� C2 sin2 K

8

� �
:

As for all cd2 schemes 4Dx-waves become unstable first which leads to C <
ffiffiffi
8
p
¼ 2:828427 . . .

For the schemes with spatial order higher than 2 no analytical solutions could be found so far; we refer to
Tables 3 and 5 for the values found by a numerical search of the maximum of jAðC;KÞj.

3.1.3.5. LC-Runge–Kutta 5th and 6th order. As mentioned above (Sections 3.1.1 and 3.1.2) all the centered dif-
ference schemes of 2nd, 4th, and 6th order are unconditionally unstable. The amplification factors jAðC;KÞj



Table 3
Limits for stable Courant numbers Ccrit

up1 cd2 up3 cd4 up5 cd6

LC-RK1 1 0 0 0 0 0
LC-RK2 1 0 0.87358 0 0 0
LC-RK3 1.25637 1.73205 1.62589 1.26222 1.43498 1.09210
LC-RK4 1.39265 2.82843 1.74526 2.06120 1.73197 1.78339
LC-RK5 1.60852 0 1.95350 0 1.64375 0
LC-RK6 1.77672 0 2.31039 0 1.86707 0
LC-RK7 1.97706 1.76442 2.58599 1.28581 2.26079 1.11251

Table 4
Analoguous to Table 3: limits for stable Courant numbers, only analytical results, as far as known

up1 cd2 up3 cd4 up5 cd6

LC-RK1 1 0 0 0 0 0
LC-RK2 1 0

ffiffiffiffiffiffiffiffi
2=33

p
0 0 0

LC-RK3 C3;1;crit

ffiffiffi
3
p

C3;4;crit C3;6;crit

LC-RK4 C4;1;crit

ffiffiffi
8
p

LC-RK5 0 0
ffiffiffiffiffi
125
p

0
LC-RK6 0 0 0
LC-RK7

For the critical Courant numbers C3;1;crit, . . . , see Eqs. (61), (62), (63), and (65).

Table 5
Dimensionless wave number K ¼ kDx, which becomes unstable first

up1 cd2 up3 cd4 up5 cd6

LC-RK1 All All ! 0 All ! 0 All
LC-RK2 p All ! 0 All ! 0 All
LC-RK3 p p=2 2.473 1.797 1.693 1.936
LC-RK4 p p=2 2.141 1.797 2.298 1.936
LC-RK5 p All 1.843 All ! 0 All
LC-RK6 p All 1.685 All 1.686 All
LC-RK7 p p=2 2.213 1.797 1.669 1.936

‘All’ means: all wavelengths with 0 < K < p, ‘! 0’ means: long waves become unstable.
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look qualitatively rather similar to those for RK2 + cd6, but with different values for the maximum and of
course with the maximum of jAðC;KÞj at the critical wavelengths Kcrit;2, Kcrit;4, and Kcrit;6, respectively. The
jAðC;KÞj for up1 look rather similar to that of RK4 + up1. For the upwind schemes no analytical solutions
could be found. The long waves only require C P 0 (see Table 1). Again we refer to Tables 3 and 5 for the
numerical determination of the stability range. One exception is RK5 + upwind 5th order for which an ana-
lytical solution could be found.

For RK5 and upwind 1st order the amplitude sounds for 2Dx-waves
AðK ¼ pÞ ¼ 1� 2C þ 2C2 � 4

3
C3 þ 2

3
C4 � 4

15
C5: ð66Þ
Because the latter is a polynomial of the 5th degree, a closed form expression for the roots of AðK ¼ pÞ ¼ �1
(which solely determines the stability range) is not available. The numerically found constraint is
C < 1:60852 . . ..

For RK5 and upwind 5th order the first short wave which becomes unstable is Kcrit ¼ 2:0402 . . . which
requires C < 1:734914 . . .. But the long waves, for which
jAðkÞj2 ¼ 1þ K6 C
360

C5 � 12
� 	

þOðK8Þ
holds, produce the stronger constraint 0 6 C <
ffiffiffiffiffi
125
p

¼ 1:64375 . . ..
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For RK6 and upwind 1st order the amplitude is for 2Dx-waves
Table
Appro

LC-RK
LC-RK
LC-RK
LC-RK
LC-RK
LC-RK
LC-RK
AðK ¼ pÞ ¼ 1� 2C þ 2C2 � 4

3
C3 þ 2

3
C4 � 4

15
C5 þ 4

45
C6: ð67Þ
Again no closed form expression is available for the roots of AðK ¼ pÞ ¼ þ1 (which solely determines the sta-
bility range) thus they need to be found numerically which delivers the constraint C < 1:77672 . . ..

3.1.3.6. LC-Runge–Kutta 7th order. It seems also not possible to find analytical solutions for critical Cou-
rant numbers. The long waves generate only C P 0 as a necessary stability constraint (see Table 1). The
stability limits where obtained numerically as described above and we refer again to Table 3 and 5. Fig. 5
shows the amplification factors for up3, up5, and cd6. The figures for cd2 and cd4 look like that for cd6
with the maximum shifted to Kcrit;2, and Kcrit;4, respectively; those for up1 looks rather similar to that for
RK4 + up1.

4. Numerical experiments

In this section some numerical experiments are carried out to highlight the practical meaning of the stability
limits found in the previous section. For this purpose a 1D-cone function
qðx; t ¼ 0Þ ¼
1þ x=b; �b 6 x 6 0;

1� x=b; 0 6 x 6 b;

0; otherwise

8><
>:
is used for the initial values. Its Fouriertransform is ~qðkÞ ¼ 2bð1� cosðkbÞÞ=ðkbÞ2, which has a main maximum
at k ¼ 0 and several rapidly decaying side maxima at kb ¼ 3p; 5p; 7p; . . .. We choose a width of b ¼ 8:5Dx
which means on the one hand that the cone is rather good resolved, but on the other hand that both fastest
growing (dimensionless) wavenumbers Kcrit;4 and Kcrit;6 are lying near the 2nd side maximum of ~qðkÞ. The grid
consists of 1000 gridpoints with constant Dx ¼ 1, the boundary conditions are periodic.

In Table 6 the approximate number of timesteps for two different Courant numbers is plotted, for which the
schemes doubtlessly become unstable. ‘Doubtless’ means, that the noise amplitude becomes bigger than the
initial amplitude of the 1D-cone function. In all the other cases where the schemes are claimed to be stable
up to a Courant number Ccrit (see Table 3 ) this numerical experiment actually results in no instability for
at least 108=C timesteps, if the advection equation was solved with a Courant number C ¼ 0:99 � Ccrit. Such
a large number of timesteps would be used only in highly resolved (Dx 
 10 km) global climate simulations
for several hundred of years.

A numerical example of a slow instability is shown in Fig. 6. Even after a half million timesteps RK5 + cd4
shows almost no numerical noise apart from a strong dispersion of an otherwise relatively good captured
peak. The blow up takes place after more than two million timesteps.

Table 7 shows the leading terms in C of the amplification factor jAðk;CÞj2 for the fastest growing wavenum-
ber Kcrit for centered difference schemes. These are calculated by inserting s from Eqs. (52), (54), (56), respec-
tively, into the amplification factors (43)–(49). The results of Table 6 match very well to these expansions. For
6
ximate number of timesteps for two different Courant numbers, for which the schemes become doubtlessly unstable

C ¼ 0:5 C ¼ 0:25

2 + up5 4200 3:2� 106

2 + cd4 200 3600
2 + cd6 120 2000
5 + cd4 50,000 2:8� 106

5 + cd6 25,000 1:2� 106

6 + cd4 800,000
6 + cd6 240,000
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Fig. 7. ‘Long time’ numerical solution of the advection equation with RK3 + up3, RK3 + up5, RK4 + cd4 (left panel) and RK5 + up5,
RK6 + up5, RK7 + up5 (right panel), analytic solution: solid line. Each scheme used with the greatest possible Courant number Ccrit.
Simulation time t ¼ 105, i.e. after 105=Ccrit timesteps.
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To get an impression about the accuracy of the stable schemes at the stability limit, Fig. 7 shows the numer-
ical solution of the advection equation where each scheme was used with its highest possible Courant number
Ccrit. Results are shown after t ¼ 105 which is equivalent to a number of 105=Ccrit timesteps. The left panel
shows the relatively efficient schemes (see Section 6 about efficiency). RK3 + up3 and RK3 + up5 show a
strong diffusion error, whereas the next efficient RK4 + cd4 has less diffusion error but a stronger dispersion
error. The other stable RK3 and RK4 schemes behave rather similar but have less efficiency than these three
schemes. The right panel shows schemes with much less efficiency but obviously bigger accuracy: RK5, RK6
and RK7 with up5. Figs. 4 and 5 already give a hint for this better behaviour, because the range with jAj 	 1
goes to higher wavenumbers compared to the other discretizations. RK5, RK6, RK7 with the other spatial
discretizations have no advantage in accuracy and compare more to the schemes on the left panel.
5. Multi-dimensional advection

Multi-dimensional advection of course can be done by using an appropriate multi-dimensional scheme. [23]
presented an example for stabilizing a multi-dimensional Crowley-scheme. But this more straightforward way
is not employed in operational models because it generally requires more operations than the splitting of the
multi-dimensional operator into several 1D advection schemes (besides the Crowley method delivers a higher
order discretization in space and time and is therefore not well suited for combination with a Runge–Kutta
method which requires Euler forward steps). As an example we look to the two-dimensional advection
equation
o/
ot
¼ �cx

o/
ox
� cy

o/
oy
: ð68Þ
If we discretize both spatial derivatives with the same scheme (one of the proposed above) and add the appro-
priate tendencies in every Runge–Kutta-substep, it follows for the semi-discretized amplitude ðCdÞtot (analo-
gously defined as in Eq. (34))
ðCdÞtot ¼ Cxd1DðKxÞ þ Cyd1DðKyÞ ð69Þ
with Ci ¼ ciDt=Dxi and Ki ¼ kiDxi. d1D are the appropriate factors derived in Section 3. We remark that with
the exception of the upwind 1st order scheme all spatial discretisations are unstable with an Euler-forward step
(Table 3). Therefore the often applied operator splitting of the directions called locally one-dimensional
(LOD)-methods [18] is not possible (LOD-methods can guarantee stability by producing the cross derivative
terms and maintain positive definiteness, if the 1D-operators have this property). At least one advantage of
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adding tendencies is that the sequence of operations does not play a role. If we consider in particular waves
with Kx ¼ Ky ¼ K we get
ðCdÞtot ¼ ðCx þ CyÞ d1DðKÞ: ð70Þ

Therefore for this special wave vector we can transform the stability problem to the purely 1D-case considered
in the section before and we get a necessary stability constraint
jCxj þ jCy j < Ccrit ð71Þ

with Ccrit from Table 3 (of course, the modulus of each Ci is valid only, if the upwind schemes are properly
implemented and can handle both velocity directions). So for example for Runge–Kutta 2nd order with up-
wind 3rd order
jCxj þ jCy j <
ffiffiffiffiffiffiffiffi
2=33

p
: ð72Þ
Analogously we find for advection in n dimensions as a necessary stability constraint
jC1j þ � � � þ jCnj < Ccrit: ð73Þ

Although this is only a necessary condition, one can find by numerical experimentation that it is often also a
sufficient condition. This is in good agreement with the result cited in [23], that diagonal waves, i.e. waves with
Kx ¼ Ky , are the most unstable ones.

6. Conclusions

In this paper, the stability properties of Runge–Kutta methods in combination with optimal-order finite
difference spatial discretisations of the linear advection equation were inspected. The emphasis lies on the clas-
sical ‘order = stage’ RK-schemes, which have the high approximation order also for nonlinear equations. It
was shown that the stability statements can be extended to the much wider class of LC-RK methods. In some
cases even analytical expressions for the critical Courant number could be found in Section 3, collected in
Table 4. Perhaps that is more satisfying for the theoretically oriented reader. Of course, the practical critical
wave number (and consequently the critical Courant number) slightly depends from the grid point distribution
and therefore from the actually available wave numbers.

The stability statements of Section 2 can be extended to a relatively broad range of linear ODE’s and in
particular to many linear, semi-discretized PDE’s and PDE-systems, as long as the discretisation keeps linear,
too. An example could be an advection–diffusion equation
oq
ot
¼ cðrÞrqþrKðrÞrq; ð74Þ
where the coefficients do not need to be constant as long as they are time independent. One could have in mind
velocity and diffusion coefficient fields which have to be transformed in a terrain following coordinate system.
Another example would be a linearised Korteveg-deVries equation, linearised shallow equations or other cou-
pled systems of such PDE’s. In the case that an analytical stability analysis is impossible, it could be sufficient
to inspect linear stability ranges by numerical experimentation. In this case one can use the simple LC-RK
method of order N defined by Eq. (22). Of course, one should consider if the discretisation of the generally
nonlinear system is better done with an ‘order = stage’ Runge–Kutta-scheme of Nth order.

For an assessment of the methods inspected here, there are to consider also other characteristics apart from
(linear and non-linear) stability as accuracy, conservation properties, further consistency conditions and nat-
urally also efficiency. Addressing to accuracy, one should obey that the temporal order is reduced e.g. by sub-
cycling to at most 2nd order. For the spatial approximation order one surely would like to go away from the
traditional centered differences 2nd order to schemes of higher order to better represent small scale features of
the fields. Whereas shock capturing does not play an essential role in the most meteorological applications, the
approximation error on the other hand can be strongly enhanced in the case of not smooth enough fields. In
meteorological applications (in particular weather forecast) one will prefer spatial discretisations in the range
of 3rd–5th order, probably not higher than 6th order.

As a (rough) measure of efficiency, [5] define an ‘effective Courant number’ Ceff ¼ C=N for an N-stage
scheme. However, in the case of subcycling it must be pointed out that the longer is a RK substep, the more



Table 8
The ‘effective Courant number’ Ceff :¼ Ccrit=N as defined in [5]

up1 cd2 up3 cd4 up5 cd6

LC-RK1 1 0 0 0 0 0
LC-RK2 0.5 0 0.437 0 0 0
LC-RK3 0.419 0.577 0.542 0.421 0.478 0.364
LC-RK4 0.348 0.707 0.436 0.515 0.433 0.446
LC-RK5 0.322 0 0.391 0 0.329 0
LC-RK6 0.296 0 0.385 0 0.311 0
LC-RK7 0.282 0.252 0.369 0.184 0.323 0.159
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substeps of the fast processes with a short timestep have to be carried out. Therefore the different substeps
contribute in a different manner to efficiency. Moreover the different spatial discretizations need more compu-
tation time by increasing the stencil. Apart from these limitations of the measure Ceff , we can see in Table 8
that the ‘efficient Courant number’ is relatively large for the combinations ‘LC-RK3 + up3’ and ‘LC-
RK3 + up5’. The latter is used indeed in the WRF model and also in the very short range forecast model
COSMO-DE of the DWD, the former is planned to be used in the regional model COSMO-EU. The efficiency
of ‘LC-RK3 + up5’ would be even surpassed by ‘LC-RK4 + cd4’, which tends to be more dispersive. If one
can tolerate a small spatial discretization order then ‘LC-RK4 + cd2’ is obviously the most efficient choice.
Usage of LC-RK methods with order N > 4 for pure advection seems neither to be justified by the temporal
order nor by efficiency. If one is interested to use even higher order RK-methods, then one has to look for
schemes whose order is less than the stage also for linear differential equations.

Appendix A. Coefficients of the (LC)-Runge–Kutta methods of order N

In this section the general conditions for ‘order = stage’ RK methods ([13]; the conditions up to 5th order
are also explicitly given in [14], Eqs. (7) and (25)) and their subset for the LC-RK methods up to 4th order are
presented.

The 1st order Runge–Kutta (or Euler method or simply the Euler forward step) has only the consistency
condition
b21 ¼ 1 ðA:1Þ

as a constraint; of course the same as for LC-RK 1st order.

The 2nd order Runge–Kutta (and LC-RK) has the truncation error OðDt3Þ if the 2 conditions
b31 þ b32 ¼ 1; ðA:2Þ

b32b21 ¼
1

2
ðA:3Þ
are fulfilled. Examples are the modified Euler method [6] or the Heun method (see also [22]).
The 3rd order RK scheme has four conditions for six coefficients bij
b41 þ b42 þ b43 ¼ 1; ðA:4Þ
b42b21 þ b43ðb31 þ b32Þ ¼ 1=2; ðA:5Þ
b42b

2
21 þ b43ðb31 þ b32Þ

2 ¼ 1=3; ðA:6Þ
b43b32b21 ¼ 1=6 ðA:7Þ
(see [13, p. 173]). Two standard schemes are shown in the following Butcher-tableaus:
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where the 3rd order RK methods cited as RK3a (left) and RK3b (right) in [19] are shown. The right one is also
denoted as TVD-RK3 in [20]. [15] proposed a memory saving RK3 variant. (A.4), (A.5), and (A.7) are the
general conditions for a 3rd order LC-RK method.

The 4th order Runge–Kutta method has 8 conditions for 10 coefficients bij:
b51 þ b52 þ b53 þ b54 ¼ 1; ðA:8Þ

b52b21 þ b53a3 þ b54a4 ¼
1

2
; ðA:9Þ

b52b
2
21 þ b53a

2
3 þ b54a

2
4 ¼

1

3
; ðA:10Þ

b54ðb42b21 þ b43a3Þ þ b53b32b21 ¼
1

6
; ðA:11Þ

b52b
3
21 þ b53a

3
3 þ b54a

3
4 ¼

1

4
; ðA:12Þ

b54ðb42b
2
21 þ b43a

2
3Þ þ b53b32b

2
21 ¼

1

12
; ðA:13Þ

b54a4ðb42b21 þ b43a3Þ þ b53b32b21a3 ¼
1

8
; ðA:14Þ

b54b43b32b21 ¼
1

24
; ðA:15Þ
with the abbreviations a3 ¼ b31 þ b32 and a4 ¼ b41 þ b42 þ b43 following Eq. (9). One example is the so called
‘classical Runge–Kutta’ method which can be found in nearly every textbook about ODE solvers [22]. Four of
these conditions, namely (A.8), (A.9), (A.11) and (A.15) are the general conditions for a 4th order LC-RK
method.
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